Konza Prairie Biological Station in northeast Kansas. Humans and animals alike depend on grasslands for survival. In addition to providing land for cattle and sheep to graze, grasslands can also store up to 30 percent of the world’s carbon. Credit: Kim Komatsu, Smithsonian Environmental Research Center

Global Change is Triggering an Identity Switch in Grasslands

News Release, Smithsonian Institutes

Since the first Homo sapiens emerged in Africa roughly 300,000 years ago, grasslands have sustained humanity and thousands of other species. But today, those grasslands are shifting beneath our feet. Global change—which includes climate change, pollution, and other widespread environmental alterations—is transforming the plant species growing in them, and not always in the ways scientists expected, a new study published Monday revealed.

Grasslands make up more than 40 percent of the world’s ice-free land. In addition to providing food for human-raised cattle and sheep, grasslands are home to animals found nowhere else in the wild, such as the bison of North America’s prairies or the zebras and giraffes of the African savannas. Grasslands also can hold up to 30 percent of the world’s carbon, making them critical allies in the fight against climate change. However, changes in the plants that comprise grasslands could put those benefits at risk.

 “Is it good rangeland for cattle, or is it good at storing carbon?” said lead author Kim Komatsu, a grassland ecologist at the Smithsonian Environmental Research Center. “It really matters what the identities of the individual species are….You might have a really invaded weedy system that would not be as beneficial for these services that humans depend on.”

The new paper, a meta-analysis published in the Proceedings of the National Academy of Sciences, offers the most comprehensive evidence to date on how human activities are changing grassland plants. The team looked at 105 grassland experiments around the world. Each experiment tested at least one global change factor—such as rising carbon dioxide, hotter temperatures, extra nutrient pollution or drought. Some experiments looked at three or more types of changes. Komatsu and the other authors wanted to know whether a global change was altering the composition of those grasslands, both in the total species present and the kinds of species.

They discovered grasslands can be surprisingly tough—to a point. In general, grasslands resisted the effects of global change for the first decade of exposure. But once they hit the 10-year mark, their species began to shift. Half of the experiments lasting 10 years or more found a change in the total number of plant species, and nearly three-fourths found changes in the types of species. By contrast, a mere one-fifth of the experiments that lasted under 10 years picked up any species changes at all. Experiments that examined three or more aspects of global change were also more likely to detect grassland transformation.

 “I think they’re very, very resilient,” said Meghan Avolio, co-author and assistant professor of ecology at Johns Hopkins University. “But when conditions arrive that they do change, the change can be really important.”

To the scientists’ surprise, the identity of grassland species can change drastically, without altering the number of species. In half the plots where individual species changed, the total amount of species remained the same. In some plots, nearly all the species had changed.

“Number of species is such an easy and bite-sized way to understand a community…but what it doesn’t take into account is species identity,” Avolio said. “And what we’re finding is there can be a turnover.”

For Komatsu, it’s a sign of hope that most grasslands could resist the experimentally induced global changes for at least 10 years.

“They’re changing slowly enough that we can prevent catastrophic changes in the future,” she said.

However, time may not be on our side. In some experiments, the current pace of global change transformed even the “control plots” that were not exposed to experimentally higher global change pressures. Eventually, many of those plots looked the same as the experimental plots.

“Global change is happening on a scale that’s bigger than the experiments we’re doing….The effects that we would expect through our experimental results, we’re starting to see those effects occurring naturally,” Komatsu said.

The abstract will be available online at www.pnas.org/cgi/doi/10.1073/pnas.1819027116

The Southern Maryland Chronicle is a local, small business entrusted to provide factual, unbiased reporting to the Southern Maryland Community. While we look to local businesses for advertising, we hope to keep that cost as low as possible in order to attract even the smallest of local businesses and help them get out to the public. We must also be able to pay employees(part-time and full-time), along with equipment, and website related things. We never want to make the Chronicle a “pay-wall” style news site.

To that end, we are looking to the community to offer donations. Whether it’s a one-time donation or you set up a reoccurring monthly donation. It is all appreciated. All donations at this time will be going to furthering the Chronicle through hiring individuals that have the same goals of providing fair, and unbiased news to the community. For now, donations will be going to a business PayPal account I have set-up for the Southern Maryland Chronicle, KDC Designs. All business transactions currently occur within this PayPal account. If you have any questions regarding this you can email me at davidhiggins@southernmarylandchronicle.com

Thank you for all of your support and I hope to continue bringing Southern Maryland the best news possible for a very long time. — David M. Higgins II




© 2019 The Southern Maryland Chronicle. All Rights Reserved. This website is not intended for users located within the European Economic Area.