Mega docking library poised to speed drug discovery

News Release, National Institutes of Health

One billion-plus compounds – weeded of “decoys” – expected by 2020.

Graph showing projected growth of available molecules
A virtual library of make-on-demand molecules available for drug discovery is expected to exceed 1 billion compounds by next year.Bryan Roth, M.D., Ph.D., of the University of North Carolina (UNC) Chapel Hill, Brian Shoichet, Ph.D., and John Irwin, Ph.D., of the University of California San Francisco, and colleagues

Researchers have launched an ultra-large virtual docking library expected to grow to more than 1 billion molecules by next year. It will expand by 1000-fold the number of such “make-on-demand” compounds readily available to scientists for chemical biology and drug discovery. The larger the library, the better its odds of weeding out inactive “decoy” molecules that could otherwise lead researchers down blind alleys. The project is funded by the National Institutes of Health.

“To improve medications for mental illnesses, we need to screen huge numbers of potentially therapeutic molecules,” explained Joshua A. Gordon, M.D., Ph.D., director of NIH’s National Institute of Mental Health (NIMH), which co-funded the research. “Unbiased computational modeling allows us to do this in a computer, vastly expediting the process of discovering new treatments. It enables researchers to virtually “see” a molecule docking with its receptor protein — like a ship in its harbor berth or a key in its lock — and predict its pharmacological properties, based on how the molecular structures are predicted to interact. Only those relatively few candidate molecules that best match the target profile on the computer need to be physically made and tested in a wet lab.” 

Bryan Roth, M.D., Ph.D.(link is external), of the University of North Carolina (UNC) Chapel Hill, Brian Shoichet, Ph.D.,(link is external) and John Irwin, Ph.D.(link is external), of the University of California San Francisco, and colleagues, report on their findings Feb. 6, 2019 in the journal Nature. The study was supported, in part, by grants from NIMH, National Institute of General Medical Sciences (NIGMS), the NIH Common Fund, and National Institute of Neurological Disorders and Stroke (NINDS).

The NIH Common Fund’ Illuminating the Druggable Genome (IDG) Program — launched in 2014 to catalyze research on proteins that are currently understudied and potential targets of therapeutic intervention — funded the docking library expansion.

Over the past few years, Roth, Shoichet, and colleagues have employed their virtual structure-based docking approach to uncover molecular secrets of an antipsychotic drug and LSD docked in their respective target receptors &Mdash; and to create a designer painkiller that selectively targets brain analgesic circuitry without morphine’s side effects.

A staggering number of potential drug-like molecules are known to exist. Yet, hundreds-of-millions to billions of diverse molecules have remained inaccessible due to limitations of existing methods used to compile molecular libraries, say the researchers. For example, their virtual structure-based docking technique, while promising, risks finding many false positives or “decoys” — flaws in the model allow for molecules that appear plausible but turn out to be biologically inactive.

Illustration of molecules already discovered.
A selection of molecules discovered using the mega docking library.Bryan Roth, M.D., Ph.D., of the University of North Carolina (UNC) Chapel Hill, Brian Shoichet, Ph.D., and John Irwin, Ph.D., of the University of California San Francisco, and colleagues

To overcome this challenge, the researchers focused on molecules that result from 130 well-characterized chemical reactions using 70,000 different chemical building blocks. Computer simulations with these molecules showed that as the size of a library grew, the ratio of “true actives” to decoys increased — just as a study’s statistical power increases with a larger sample.

In the new study, the researchers examined the structure-based docking of 138 million molecules with either the D4 receptor, a key protein that mediates the actions of the brain chemical messenger dopamine, or the enzyme AmpC, which confers resistance to certain antibiotics and has proven difficult to block.

“The D4 receptor is of particular interest to NIMH because of its role in cognition and other executive functions of the brain’s prefrontal cortex that are often disturbed in mental illnesses,” said Laurie Nadler, Ph.D., of the NIMH Division of Neuroscience and Basic Behavioral Science, program officer for the grant supporting the D4 receptor study.

The researchers then synthesized and tested, in a lab, the top 549 molecules that virtually docked best with the D4 receptor and 44 molecules that docked best with the enzyme.  These studies revealed several novel drug-like molecules that bind only to the D4 receptor (and not the closely related D2 or D3 dopamine receptors) and turned the receptor on or off. Additionally, one molecule (4163) emerged as the most potent binder of AmpC ever. A virtual molecule’s docking rank predicted its actual likelihood of binding to the D4 dopamine receptor in a lab assay.

The discovery of new and potent molecules for both targets also confirmed that ultra-large libraries contain molecules better suited to a given receptor structure than smaller libraries and that virtual docking can recognize the molecules and predict the total number of expected active compounds within a library. 

“This new study illustrates the potential of unbiased computational screening and molecular docking to discover new tool molecules and potential therapeutic agents, providing a rapid and robust pathway that will lead directly to novel drug treatments for mental illnesses,” added Gordon.

The Southern Maryland Chronicle is a local, small business entrusted to provide factual, unbiased reporting to the Southern Maryland Community. While we look to local businesses for advertising, we hope to keep that cost as low as possible in order to attract even the smallest of local businesses and help them get out to the public. We must also be able to pay employees(part-time and full-time), along with equipment, and website related things. We never want to make the Chronicle a “pay-wall” style news site.

To that end, we are looking to the community to offer donations. Whether it’s a one-time donation or you set up a reoccurring monthly donation. It is all appreciated. All donations at this time will be going to furthering the Chronicle through hiring individuals that have the same goals of providing fair, and unbiased news to the community. For now, donations will be going to a business PayPal account I have set-up for the Southern Maryland Chronicle, KDC Designs. All business transactions currently occur within this PayPal account. If you have any questions regarding this you can email me at davidhiggins@southernmarylandchronicle.com

Thank you for all of your support and I hope to continue bringing Southern Maryland the best news possible for a very long time. — David M. Higgins II




© 2019 The Southern Maryland Chronicle. All Rights Reserved. This website is not intended for users located within the European Economic Area.